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Background

Face classification is a subfield of computer vision that focuses on the 

identification and recognition of human faces. It has become an increasingly 

important area of research due to its wide range of practical applications, such as 

surveillance, security, and facial recognition technology.

Face classification research has been ongoing for several decades, with early 

approaches relying on manually designed feature extraction techniques, such as 

the extraction of edges, corners, and texture patterns. However, with the advent of 

deep learning techniques and the availability of large annotated datasets, deep 

neural networks have become the dominant approach for face classification.



Methodology
1. Acquire data 

a. Two videos for each person, one indoors and one outdoors

2. Preprocess the data for use by the model

a. Extract images from frames in the videos

b. Augment those images using the techniques mentioned earlier to create variety for the model

c. Transform the images into tensor objects, which is needed for the model to perform backpropagation

d. Create a stratified split of the data

i. Image set to get raw features

ii. Training set

iii. Testing set

3. Initialize the resnet model 

a. Model comes pre trained on a wide variety of images

b. Use the images set aside to get 512 raw features

4. Preprocess the features acquired from the resnet model using a correlation matrix

a. Reduce the number of features to the top 64 features with the highest correlation with class variable

5. Perform training using CNN with backpropagation

a. Run through several epochs (10) until loss is minimized

i. Diminishing returns after successive epochs

6. Test the model 

7. After step 4, initialize and train decision tree

a. Using gini gain, which works better than entropy when working with continuous values

8. Test the decision tree model



Dataset

To collect face images of our group 

member, we took videos of 30 seconds 

for each member in various 

backgrounds.

Using OpenCV library, we had extracted 

images from videos 30 frames per 

second and we could create about 

1000+ raw images of each group 

member.



Dataset Distributions

The dataset distribution refers to the way data is distributed 

across different categories or classes in a dataset. The 

distribution of data can have a significant impact on the 

performance of deep learning models, as models may have a 

bias towards certain classes if they are over-represented in the 

dataset.

In this project, the dataset consists of images of individuals' faces, 

where each image is labeled with the name of the person in the 

image. This distribution shows that the dataset is relatively well 

balanced for some classes, with the exception of sami. This 

under-representation can cause a bias in model if not combated. 

This is important for ensuring that the model is not biased towards 

any specific individual and can generalize well to the faces in 

different circumstances.

To nullify the effect of the slight imbalance in the distributions, we 

used data augmentation.



Augmentation

Data augmentation is a technique used in machine 

learning and deep learning, to increase the size and 

diversity of the training dataset by applying various 

transformations on the existing data which improves 

model's ability to generalize to new, unseen data.

Here we preprocessed images by cropping them into 

224 X 224 size then applied various variations of 

augmentation for each image by using Pytorch 

transforms library.

After augmentation, we turn the images into the tensor 

object using PyTorch framework to leverage its 

optimized computational capabilities for efficient deep 

learning processing.



Tensor object and backpropagation

In PyTorch, a tensor is a multi-dimensional array that can store 
and process numerical data. Tensors are the fundamental building 
blocks of PyTorch and are used for computations in deep learning 
models. They have similar structure with arrays.

However, When you perform operations on tensors in PyTorch, 
the framework keeps track of the operations performed and 
creates a computational graph. This graph represents the 
operations as a directed acyclic graph (DAG), where each node 
represents an operation and edges represent the flow of data.

During backpropagation, the intermediate results stored during the 
forward pass are used to calculate the gradients of the model's 
parameters and update the weights accordingly.

We also normalize these tensors to improve its convergence and 
mitigate numerical instability.



Algorithm: Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep learning 

algorithm commonly used for image classification and object 

recognition. The basic idea behind CNNs is to use layers of 

interconnected neurons that can automatically learn and identify 

features in images.

At a high level, a CNN consists of several layers that perform 

different functions. The input layer takes in the image data, which 

is then passed through a series of convolutional layers. These 

layers apply filters to the input data in order to detect features 

such as edges, corners, and textures.

During the training process, the weights of the filters in the 

convolutional layers are adjusted through a process of 

backpropagation, which involves calculating the gradient of the 

loss function with respect to the weights and updating them 

accordingly. This process continues until the network converges 

on a set of weights that minimizes the loss function.



Algorithm: Residual Neural Network

Residual Neural Networks (ResNets) are a type of 
neural network architecture that address the problem of 
vanishing gradients in very deep neural networks. 
Vanishing gradients can occur in deep networks when 
the gradient signal becomes too small as it propagates 
backwards through the network during training, which 
can result in slower convergence or even complete 
failure to converge.

The basic idea behind ResNets is to introduce skip 
connections, also known as residual connections, that 
allow the network to bypass one or more layers and 
directly propagate information from earlier layers to 
later layers. This makes it easier for the gradient signal 
to flow backwards through the network during training, 
which can help to mitigate the vanishing gradients 
problem and allow for deeper networks to be trained 
more effectively.



Algorithm: Top k Features

We also created an algorithm to extract the top k features from a 

feature vector by selecting a subset of k features from the original 

set of features that are most informative or most correlated with 

the target variable. We did this to reduce the computational 

complexity of a machine learning algorithm and to improve its 

performance by removing irrelevant or redundant features.

The algorithm is a correlation-based feature selection method. It 

first calculates the correlation matrix of the input data and then 

selects the top k features that have the highest correlation 

values with each other. Specifically, it creates a mask of ones for 

the lower triangle of the correlation matrix and sets the upper 

triangle to NaN values to avoid selecting the same feature twice. 

Then it sorts the resulting correlation values in descending order 

and selects the top k features based on the sorted correlation 

values.

top k



Algorithm: Neural Network & Decision Tree

Convolutional Neural Network (CNN)

Neural Network (NN)

Decision Tree



ACCURACY

LOSS



Plotting graph

This is the visualized animation of training process, we can see that accuracy rapidly increases 

over the start of the training epochs, but gradually decreases acceleration over time.



Results: Neural Network Confusion matrix (10 epochs)

Confusion_matrix[a][j] shows the 

percentage of times class ‘j’(column) 

was predicted when the true class 

was ‘a’(row)

Accuracy(Aditya) = 1

Accuracy(Jinyoon) = 0.95

Accuracy(Kenya) = 1.00

Accuracy(Peter) = 0.99

Accuracy(Sami) = 0.99

AccuracyTotal = 0.98



Results: Decision Tree

Decision tree model produces less 

accurate results than the CNN, but still 

produces favorable results.

Accuracy(Aditya) = 0.85

Accuracy(Jinyoon) = 0.89

Accuracy(Kenya) = 0.96

Accuracy(Peter) = 0.98

Accuracy(Sami) = 0.97

AccuracyTotal = 0.93



Interpretability: CNN

Class activation maps (CAM) are a visualization 

technique that allows us to see which parts of an input 

image a convolutional neural network (CNN) is using to 

make a prediction. CAMs are useful for understanding 

how a CNN is making its predictions and for identifying 

which parts of an image are most important for a 

particular class.

The basic idea behind CAMs is to generate a heatmap 

that shows the contribution of each pixel in the input 

image to the final prediction of a particular class. This 

can be done by taking the output of the last 

convolutional layer in the CNN and using global 

average pooling to reduce the spatial dimensions of the 

feature map to a single value. The resulting vector can 

then be used as input to a fully connected layer that 

predicts the class probabilities.



Interpretability: Decision Tree

Decision Tree model with a max depth of 12



Conclusion

In conclusion, it was seen that:

- The neural network reached near 100% accuracy, while the decision tree was 
slightly less successful

This is likely a result of differences in complexity: 

- Decision trees are essentially a linear series of if-statements that lose features as 
they grow closer to a decision

- Neural networks are much more refined as the data is passed back and forth
- In the case of image classification, a complex and nonlinear relationship between 

inputs and outputs, neural networks are the better option for classification

Therefore, to further evaluate the model we will be testing the model on a separate and 
completely new dataset distribution.



Our code is also available on 

GitHub for the project, allowing 

for easy reproducibility and 

transparency in our research.

github.com/kendreaditya/ml-face-detection

Code Availability

https://github.com/kendreaditya/ml-face-detection
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