
Face Classification
Jinyoon Kim, Aditya, Kenya, Peter, Sami

Background

Face classification is a subfield of computer vision that focuses on the

identification and recognition of human faces. It has become an increasingly

important area of research due to its wide range of practical applications, such as

surveillance, security, and facial recognition technology.

Face classification research has been ongoing for several decades, with early

approaches relying on manually designed feature extraction techniques, such as

the extraction of edges, corners, and texture patterns. However, with the advent of

deep learning techniques and the availability of large annotated datasets, deep

neural networks have become the dominant approach for face classification.

Methodology
1. Acquire data

a. Two videos for each person, one indoors and one outdoors

2. Preprocess the data for use by the model

a. Extract images from frames in the videos

b. Augment those images using the techniques mentioned earlier to create variety for the model

c. Transform the images into tensor objects, which is needed for the model to perform backpropagation

d. Create a stratified split of the data

i. Image set to get raw features

ii. Training set

iii. Testing set

3. Initialize the resnet model

a. Model comes pre trained on a wide variety of images

b. Use the images set aside to get 512 raw features

4. Preprocess the features acquired from the resnet model using a correlation matrix

a. Reduce the number of features to the top 64 features with the highest correlation with class variable

5. Perform training using CNN with backpropagation

a. Run through several epochs (10) until loss is minimized

i. Diminishing returns after successive epochs

6. Test the model

7. After step 4, initialize and train decision tree

a. Using gini gain, which works better than entropy when working with continuous values

8. Test the decision tree model

Dataset

To collect face images of our group

member, we took videos of 30 seconds

for each member in various

backgrounds.

Using OpenCV library, we had extracted

images from videos 30 frames per

second and we could create about

1000+ raw images of each group

member.

Dataset Distributions

The dataset distribution refers to the way data is distributed

across different categories or classes in a dataset. The

distribution of data can have a significant impact on the

performance of deep learning models, as models may have a

bias towards certain classes if they are over-represented in the

dataset.

In this project, the dataset consists of images of individuals' faces,

where each image is labeled with the name of the person in the

image. This distribution shows that the dataset is relatively well

balanced for some classes, with the exception of sami. This

under-representation can cause a bias in model if not combated.

This is important for ensuring that the model is not biased towards

any specific individual and can generalize well to the faces in

different circumstances.

To nullify the effect of the slight imbalance in the distributions, we

used data augmentation.

Augmentation

Data augmentation is a technique used in machine

learning and deep learning, to increase the size and

diversity of the training dataset by applying various

transformations on the existing data which improves

model's ability to generalize to new, unseen data.

Here we preprocessed images by cropping them into

224 X 224 size then applied various variations of

augmentation for each image by using Pytorch

transforms library.

After augmentation, we turn the images into the tensor

object using PyTorch framework to leverage its

optimized computational capabilities for efficient deep

learning processing.

Tensor object and backpropagation

In PyTorch, a tensor is a multi-dimensional array that can store
and process numerical data. Tensors are the fundamental building
blocks of PyTorch and are used for computations in deep learning
models. They have similar structure with arrays.

However, When you perform operations on tensors in PyTorch,
the framework keeps track of the operations performed and
creates a computational graph. This graph represents the
operations as a directed acyclic graph (DAG), where each node
represents an operation and edges represent the flow of data.

During backpropagation, the intermediate results stored during the
forward pass are used to calculate the gradients of the model's
parameters and update the weights accordingly.

We also normalize these tensors to improve its convergence and
mitigate numerical instability.

Algorithm: Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep learning

algorithm commonly used for image classification and object

recognition. The basic idea behind CNNs is to use layers of

interconnected neurons that can automatically learn and identify

features in images.

At a high level, a CNN consists of several layers that perform

different functions. The input layer takes in the image data, which

is then passed through a series of convolutional layers. These

layers apply filters to the input data in order to detect features

such as edges, corners, and textures.

During the training process, the weights of the filters in the

convolutional layers are adjusted through a process of

backpropagation, which involves calculating the gradient of the

loss function with respect to the weights and updating them

accordingly. This process continues until the network converges

on a set of weights that minimizes the loss function.

Algorithm: Residual Neural Network

Residual Neural Networks (ResNets) are a type of
neural network architecture that address the problem of
vanishing gradients in very deep neural networks.
Vanishing gradients can occur in deep networks when
the gradient signal becomes too small as it propagates
backwards through the network during training, which
can result in slower convergence or even complete
failure to converge.

The basic idea behind ResNets is to introduce skip
connections, also known as residual connections, that
allow the network to bypass one or more layers and
directly propagate information from earlier layers to
later layers. This makes it easier for the gradient signal
to flow backwards through the network during training,
which can help to mitigate the vanishing gradients
problem and allow for deeper networks to be trained
more effectively.

Algorithm: Top k Features

We also created an algorithm to extract the top k features from a

feature vector by selecting a subset of k features from the original

set of features that are most informative or most correlated with

the target variable. We did this to reduce the computational

complexity of a machine learning algorithm and to improve its

performance by removing irrelevant or redundant features.

The algorithm is a correlation-based feature selection method. It

first calculates the correlation matrix of the input data and then

selects the top k features that have the highest correlation

values with each other. Specifically, it creates a mask of ones for

the lower triangle of the correlation matrix and sets the upper

triangle to NaN values to avoid selecting the same feature twice.

Then it sorts the resulting correlation values in descending order

and selects the top k features based on the sorted correlation

values.

top k

Algorithm: Neural Network & Decision Tree

Convolutional Neural Network (CNN)

Neural Network (NN)

Decision Tree

ACCURACY

LOSS

Plotting graph

This is the visualized animation of training process, we can see that accuracy rapidly increases

over the start of the training epochs, but gradually decreases acceleration over time.

Results: Neural Network Confusion matrix (10 epochs)

Confusion_matrix[a][j] shows the

percentage of times class ‘j’(column)

was predicted when the true class

was ‘a’(row)

Accuracy(Aditya) = 1

Accuracy(Jinyoon) = 0.95

Accuracy(Kenya) = 1.00

Accuracy(Peter) = 0.99

Accuracy(Sami) = 0.99

AccuracyTotal = 0.98

Results: Decision Tree

Decision tree model produces less

accurate results than the CNN, but still

produces favorable results.

Accuracy(Aditya) = 0.85

Accuracy(Jinyoon) = 0.89

Accuracy(Kenya) = 0.96

Accuracy(Peter) = 0.98

Accuracy(Sami) = 0.97

AccuracyTotal = 0.93

Interpretability: CNN

Class activation maps (CAM) are a visualization

technique that allows us to see which parts of an input

image a convolutional neural network (CNN) is using to

make a prediction. CAMs are useful for understanding

how a CNN is making its predictions and for identifying

which parts of an image are most important for a

particular class.

The basic idea behind CAMs is to generate a heatmap

that shows the contribution of each pixel in the input

image to the final prediction of a particular class. This

can be done by taking the output of the last

convolutional layer in the CNN and using global

average pooling to reduce the spatial dimensions of the

feature map to a single value. The resulting vector can

then be used as input to a fully connected layer that

predicts the class probabilities.

Interpretability: Decision Tree

Decision Tree model with a max depth of 12

Conclusion

In conclusion, it was seen that:

- The neural network reached near 100% accuracy, while the decision tree was
slightly less successful

This is likely a result of differences in complexity:

- Decision trees are essentially a linear series of if-statements that lose features as
they grow closer to a decision

- Neural networks are much more refined as the data is passed back and forth
- In the case of image classification, a complex and nonlinear relationship between

inputs and outputs, neural networks are the better option for classification

Therefore, to further evaluate the model we will be testing the model on a separate and
completely new dataset distribution.

Our code is also available on

GitHub for the project, allowing

for easy reproducibility and

transparency in our research.

github.com/kendreaditya/ml-face-detection

Code Availability

https://github.com/kendreaditya/ml-face-detection

	Slide 1: Face Classification
	Slide 2: Background
	Slide 3: Methodology
	Slide 4: Dataset
	Slide 5: Dataset Distributions
	Slide 6: Augmentation
	Slide 7: Tensor object and backpropagation
	Slide 8: Algorithm: Convolutional Neural Networks
	Slide 9: Algorithm: Residual Neural Network
	Slide 10: Algorithm: Top k Features
	Slide 11: Algorithm: Neural Network & Decision Tree
	Slide 12: ACCURACY LOSS
	Slide 13: Plotting graph
	Slide 14: Results: Neural Network Confusion matrix (10 epochs)
	Slide 15: Results: Decision Tree
	Slide 16: Interpretability: CNN
	Slide 17: Interpretability: Decision Tree
	Slide 18: Conclusion
	Slide 19: Code Availability

