Face Classification

Jinyoon Kim, Aditya, Kenya, Peter, Sami

Background

Face classification is a subfield of computer vision that focuses on the
identification and recognition of human faces. It has become an increasingly
important area of research due to its wide range of practical applications, such as
surveillance, security, and facial recognition technology.

Face classification research has been ongoing for several decades, with early
approaches relying on manually designed feature extraction techniques, such as
the extraction of edges, corners, and texture patterns. However, with the advent of
deep learning techniques and the availability of large annotated datasets, deep
neural networks have become the dominant approach for face classification.

Methodology

1. Acquire data
a. Two videos for each person, one indoors and one outdoors
2. Preprocess the data for use by the model
a. Extractimages from frames in the videos
b. Augment those images using the techniques mentioned earlier to create variety for the model
c. Transform the images into tensor objects, which is needed for the model to perform backpropagation
d. Create a stratified split of the data
i. Image set to get raw features
ii. Training set
iii. Testing set
3. Initialize the resnet model
a. Model comes pre trained on a wide variety of images
b. Use the images set aside to get 512 raw features
4. Preprocess the features acquired from the resnet model using a correlation matrix
a. Reduce the number of features to the top 64 features with the highest correlation with class variable
5. Perform training using CNN with backpropagation
a. Run through several epochs (10) until loss is minimized
i. Diminishing returns after successive epochs
6. Testthe model
7. After step 4, initialize and train decision tree
a. Using gini gain, which works better than entropy when working with continuous values

8. Test the decision tree model

Dataset

To collect face images of our group
member, we took videos of 30 seconds
for each member in various
backgrounds.

Using OpenCYV library, we had extracted
images from videos 30 frames per
second and we could create about
1000+ raw images of each group
member.

IMAGES (30 FPS)

Dataset Distributions

The dataset distribution refers to the way data is distributed
across different categories or classes in a dataset. The
distribution of data can have a significant impact on the
performance of deep learning models, as models may have a
bias towards certain classes if they are over-represented in the
dataset.

In this project, the dataset consists of images of individuals' faces,
where each image is labeled with the name of the person in the
image. This distribution shows that the dataset is relatively well
balanced for some classes, with the exception of sami. This
under-representation can cause a bias in model if not combated.
This is important for ensuring that the model is not biased towards
any specific individual and can generalize well to the faces in
different circumstances.

To nullify the effect of the slight imbalance in the distributions, we
used data augmentation.

Peter

Dataset Class Distribution

jinyoon

sami

Augmentation

Data augmentation is a technique used in machine
learning and deep learning, to increase the size and
diversity of the training dataset by applying various
transformations on the existing data which improves
model's ability to generalize to new, unseen data.

Here we preprocessed images by cropping them into
224 X 224 size then applied various variations of
augmentation for each image by using Pytorch
transforms library.

After augmentation, we turn the images into the tensor
object using PyTorch framework to leverage its
optimized computational capabilities for efficient deep
learning processing.

DATASET AUGMENTATION

CROP IMAGE
224 X 224

HORIZONTAL FLIP
COLORJITTER
ROTATION
CROP

AUGMENTATION DONE BY torchvision.transforms

Tensor object and backpropagation

Shape of Image Tensor:

In PyTorch, a tensor is a multi-dimensional array that can store torch.Size([3, 512, 512])
and process numerical data. Tensors are the fundamental building e Tensor:

tensor([[[0.7765, 8.7765, 0.7765, ..., 8.5843, 0.5804, 9.5843],

blocks of PyTorch and are used for computations in deep learning [8.7765, 8.7765, 0.7765, ..., 0.5813, 0.5843, 0.5843],

.. . [0.7765, 0.7745, @.7765, ..., .5882, 0.5843, 0.5882],
models. They have similar structure with arrays.

Ty
[0.6745, 0.6784, 0.6941, ..., 0.2784, 0.2784, 0.2784],

. . 0.6667, 0.6745, 0.6902, ..., 0.2745, 0.2745, 0.2745],
However, When you perform operations on tensors in PyTorch, {Mm 0675, 0.6863, ... 0.2745, 0.2745. e,ms}],

the framework keeps track of the operations performed and (0470, 04071, 04T, .. B3, 0,513, 0.3157),
creates a computational graph. This graph represents the [6.4471, 8.4471, 0.4471, ..., 8.3137, 0.3137, 0.3137],

. . . [0.4471, 9.4471, @.4471, ..., 8.3137, 8.3175, @.3176],
operations as a directed acyclic graph (DAG), where each node

represents an operation and edges represent the flow of data. [0.3569, 8.3647, 0.3765, ..., 8.1563, 0.1569, 0.1369],

[0.3529, 0.3668, 0.3765, ..., 0.1569, 0.1569, 0.1569],
[0.3529, 0.3608, 0.3765, ..., 0.1569, 9.1569, 0.1569]],

During backpropagation, the intermediate rgsults stored during the ([0.5000, 8.3055, 0.3055, ... 0.219%, 0.21%, 0.2136],
forward pass are used to calculate the gradients of the model's [0.3020, 0.3059, 0.309, ..., .2196, 0.21%, 0.21%],

. . [6.3859, 9.3@59, 0.3059, ..., 0.2196, 08,2235, @.2235],
parameters and update the weights accordingly.
[6.2518, 0.2549, 0.2627, ..., 0.1529, 8.1529, 0.1490],

. . . [@.2471, 0.2518, @.2627, ..., 9.1529, ©0.1490, @.1499],
We also normalize these tensors to improve its convergence and (6,247, 0.2510, 0.2627, ... 0.1529. 0.1498, .1499]]])

mitigate numerical instability.

Algorithm: Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep learning
algorithm commonly used for image classification and object
recognition. The basic idea behind CNNs is to use layers of
interconnected neurons that can automatically learn and identify
features in images.

At a high level, a CNN consists of several layers that perform
different functions. The input layer takes in the image data, which
is then passed through a series of convolutional layers. These
layers apply filters to the input data in order to detect features
such as edges, corners, and textures.

During the training process, the weights of the filters in the
convolutional layers are adjusted through a process of
backpropagation, which involves calculating the gradient of the
loss function with respect to the weights and updating them
accordingly. This process continues until the network converges
on a set of weights that minimizes the loss function.

— CAR
— TRUCK
— VAN

D — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN SOFTMAX

FULLY
CONNECTED
Y ¥

FEATURE LEARNING CLASSIFICATION

Algorithm: Residual Neural Network

Residual Neural Networks (ResNets) are a type of
neural network architecture that address the problem of
vanishing gradients in very deep neural networks.
Vanishing gradients can occur in deep networks when
the gradient signal becomes too small as it propagates
backwards through the network during training, which
can result in slower convergence or even complete
failure to converge.

The basic idea behind ResNets is to introduce skip
connections, also known as residual connections, that
allow the network to bypass one or more layers and
directly propagate information from earlier layers to
later layers. This makes it easier for the gradient signal
to flow backwards through the network during training,
which can help to mitigate the vanishing gradients
problem and allow for deeper networks to be trained
more effectively.

Algorithm: Top k Features

We also created an algorithm to extract the top k features from a
feature vector by selecting a subset of k features from the original
set of features that are most informative or most correlated with
the target variable. We did this to reduce the computational
complexity of a machine learning algorithm and to improve its
performance by removing irrelevant or redundant features.

The algorithm is a correlation-based feature selection method. It
first calculates the correlation matrix of the input data and then
selects the top k features that have the highest correlation
values with each other. Specifically, it creates a mask of ones for
the lower triangle of the correlation matrix and sets the upper
triangle to NaN values to avoid selecting the same feature twice.
Then it sorts the resulting correlation values in descending order
and selects the top k features based on the sorted correlation
values.

X4
x=|"
.xd o
Feature vector

Feature space (3D)

Algorithm: Neural Network & Decision Tree

Neural Network (NN)

L=
tput layer

hidden layer 1 hidden layer 2

)
{

)

N,
(X
R

input layer

Decision Tree

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING o
FEATURE LEARNING

Convolutional Neural Network (CNN)

ACCURACY

LNACC
epoch ladit-,.ra jinyoon Kenya Peter sami total_accuracy epoch lval_loss_z val_loss_jwval loss kval loss Fval loss sval loss total

1 0.200557 0 0.569444 0.012618 0.669753 0.290475 1 0.18171 0.170927 0.26567 0.272044 0.155047 1.045398
2 0.888579 0.104572 0.875 0.369085 0.986111 0.64475 2 0.118005 0.131971 0.183%077 0.174%% 0.09267 0.7060682
3 (0.969359 0.552486 0.895082 0.785489 0.993827 0.839245 3 0.086383 0.096288 0.146353 0.124332 0.065735 0.5159091
4 0.991643 0.823204 0.95216 0.899054 0.992284 0.931669 4 0.061851 0.076411 0.114647 0.092256 0.053327 0.400432
5 0986072 0.922652 0.962963 0.921136 0.990741 0.956713 3 0.055962 0.06739 0.086485 0.070516 0.041591 0.321947
6 0.986072 0.950276 0.987654 0.955836 0.998457 0.975659 6 0.041266 0.054006 0.072246 0.053298 0.040361 0.261178
7 0986072 0.933702 0.990741 0.933754 0.987654 0.966385 7 0.035065 0.047313 0.064041 0.042638 0.02457> 0.218032
8 (0.988858 0.944751 0.992284 0.946372 0.992284 0.97291 8 0.030166 0.041137 0.051985 0.034642 0.029798 0.187729
9 0.988858 0.9353801 0.998457 0.949527 (0.989198 0.976368 9 0.0259832 0.037739 0.041532 0.028212 0.027178 0.164553
10 0.994429 0.961326 0.996914 0.952681 0.99537 0.930144 10 0.027261 0.03251 0.037059 0.025224 0.021922 0.1432975
11 0.991643 0.961326 0.998457 0.962145 0.989198 0.980554 11 0.022588 0.029513 0.0349738 0.020962 0.020638 0.128679
12 0.991643 0.972376 1 0.955836 0.990741 0.982119 12 0.020337 0.026804 0.030953 0.019074 0.017787 0.114934
13 0.994429 0.961326 0.99537 0.958991 0.992284 0.98048 13 0.021293 0.026316 0.025873 0.016268 0.015287 0.105042
14 0.997214 0.966851 0.998457 0.958991 0.987654 0.981833 14 0.017659 0.02652 0.024293 0.013582 0.016265 0.098719
15 0.997214 0.955801 0.993457 0.971609 0.990741 0.982764 15 0.016521 0.02086 0.02153 0.014356 0.014141 0.087407
16 1 0.966851 1 0.9653 0.992284 0.984887 16 0.015184 0.021451 0.022453 0.010909 0.012806 0.082853
17 0.997214 0.966851 0.996914 0.962145 0.99537 0.983699 17 0.015745 0.019726 0.017621 0.010604 0.013772 0.077467
18 0.991643 0.972376 0.996914 0.968454 0.998457 0.985569 18 0.015467 0.018981 0.018711 0.00870% 0.01333 0.075197
19 0.997214 0.972376 1 0.971609 0.996914 0.987623 19 0.012625 0.015728 0.016136 0.009481 0.010512 0.064482
20 0.994429 0.961326 1 0.958991 0.993827 0.981715 20 0.0132%984 0.017593 0.015795 0.006905 0.011281 0.065558
test 1 1 1 1 1 1 test 0.064482 0.012625 0.015728 0.016136 0.009481 0.010512

Plotting graph

This is the visualized animation of training process, we can see that accuracy rapidly increases
over the start of the training epochs, but gradually decreases acceleration over time.

Class Accuracies over Epochs Validation Loss over Epochs
1.0
— aditya 1.0 1 -== Val Loss aditya
—— Jinyoon ——=- Val Loss jinyoon
— Kenya ——- \al Loss Kenya
089 peter 0.8 - —==- Val Loss Peter
— sami ——- Val Loss sami
-+ Val Loss Total
0.6
= 0.6
% 7]
[7]
g 3
0.4 1 0.4 4
0.2 0.2 -
0.0 T T T T T T T 0.0 T T T T T T T
0.0 25 5.0 15 10.0 12.5 15.0 17.5 0.0 25 5.0 15 10.0 12.5 15.0 17.5 20.0

Epoch Epoch

Results: Neural Network Confusion matrix (10 epochs)

Confusion_matrix[a][j] shows the
percentage of times class j’(column)
was predicted when the true class
was ‘a’(row)

Accuracy(Aditya) = 1
Accuracy(Jinyoon) = 0.95
Accuracy(Kenya) = 1.00
Accuracy(Peter) = 0.99

Accuracy(Sami) = 0.99

AccuracyTotal = 0.98

Results: Decision Tree

Normalized Confusion Matrix

0.11

Peter
'

True Label
adity

0.02

sami
'

' ' ' '
Kenya Peter aditya jinyoon sami
Predicted Label

Decision tree model produces less
accurate results than the CNN, but still
produces favorable results.

Accuracy(Aditya) = 0.85
Accuracy(Jinyoon) = 0.89
Accuracy(Kenya) = 0.96
Accuracy(Peter) = 0.98
Accuracy(Sami) = 0.97
AccuracyTotal = 0.93

Feature 1 Feature 2

Interpretability: CNN

Class activation maps (CAM) are a visualization
technique that allows us to see which parts of an input
image a convolutional neural network (CNN) is using to
make a prediction. CAMs are useful for understanding
how a CNN is making its predictions and for identifying
which parts of an image are most important for a
particular class.

Feature 3 Feature 4

The basic idea behind CAMs is to generate a heatmap
that shows the contribution of each pixel in the input
iImage to the final prediction of a particular class. This
can be done by taking the output of the last
convolutional layer in the CNN and using global
average pooling to reduce the spatial dimensions of the
feature map to a single value. The resulting vector can
then be used as input to a fully connected layer that
predicts the class probabilities.

Interpretability: Decision Tree

Decision Tree model with a max depth of 12

Conclusion

In conclusion, it was seen that:

- The neural network reached near 100% accuracy, while the decision tree was
slightly less successful

This is likely a result of differences in complexity:

- Decision trees are essentially a linear series of if-statements that lose features as
they grow closer to a decision

- Neural networks are much more refined as the data is passed back and forth

- In the case of image classification, a complex and nonlinear relationship between
inputs and outputs, neural networks are the better option for classification

Therefore, to further evaluate the model we will be testing the model on a separate and
completely new dataset distribution.

Code Availabllity

Our code is also available on
GitHub for the project, allowing
for easy reproducibility and
transparency in our research.

github.com/kendreaditya/ml-face-detection

B kendreaditya / ml-face-detection Public

<> Code (3 Issues [Pull requests

P

main ~ P 3branches ©0tags

X spider-Man2099 Updated -

0D ODODODDODO0ODDRODODODODODODEOON

data

.gitignore
DecisionTree.ipynb
README.md
accuracy_metrics.csv
animated_accuracy_plot. gif
animated _loss_plot.gif
best_model.pt
best_model_normalized_confusion...
class-activation-maps.ipynb
decisiontree.py
image_process.py
loss_metrics.csv

models.py

realtime.py
reshet_script.py

samp_augmentation.py

README.md

® actions [Projects

added args to imge_process script and created training py noteboo...

creaded script to get cams and fixed some bugs
update resnet with accuracy metrics

fixed some grammar issues

update for metrics

update for metrics

update for metrics

update for metrics

update for metrics

creaded script to get cams and fixed some bugs
1, fixed some synatix errors

commented resize images In

update for metrics

final update for resnet

Updated

Update resNet_script.py

added args to imge_process script and created training py noteboo...

© Security |~ Insights

£} Notifications

224a491 2 hours ago {3 62 commits

3 weeks ago
last week

4 days ago
last month
13 hours ago
13 hours ago
13 hours ago
13 hours ago
13 hours ago
last week

3 days ago
last week

13 hours ago
18 hours ago
2 hours ago
12 hours ago

3 weeks ago

Face Classification using Machine Learning

¥ Fork 0 T swr 2

About

Machine Learning based face detection
for CMPSC 445 - Data Science

0 Readme
€r 2stars
® 4watching
Y oforks

Report repasitory

Releases

Packages

No packages p

Contributors s

TEQ=

Languages

® Jupyter Notebook 69 &%
® Python 30.1%

https://github.com/kendreaditya/ml-face-detection

	Slide 1: Face Classification
	Slide 2: Background
	Slide 3: Methodology
	Slide 4: Dataset
	Slide 5: Dataset Distributions
	Slide 6: Augmentation
	Slide 7: Tensor object and backpropagation
	Slide 8: Algorithm: Convolutional Neural Networks
	Slide 9: Algorithm: Residual Neural Network
	Slide 10: Algorithm: Top k Features
	Slide 11: Algorithm: Neural Network & Decision Tree
	Slide 12: ACCURACY LOSS
	Slide 13: Plotting graph
	Slide 14: Results: Neural Network Confusion matrix (10 epochs)
	Slide 15: Results: Decision Tree
	Slide 16: Interpretability: CNN
	Slide 17: Interpretability: Decision Tree
	Slide 18: Conclusion
	Slide 19: Code Availability

